Building Blocks for Organic Synthesis

Organometallic, oxidation, reduction, Grignard, and other reagents for organic synthesis

Chemical synthesis reagents are essential to transform building blocks into target molecules quickly, safely, and cleanly. The Thermo Scientific

portfolio includes over 5,000 organic synthesis reagents spanning a wide range of R&D applications. The compounds include reducing and

oxidizing reagents, organometallics, commonly used functional reagents, and specialty reagents for specific reactions.

Our organic synthesis products are available in a range of purity grades, concentrations, and pack sizes. Packaging options include our industry-leading AcroSeal packaging for safe handling of air- or moisture-sensitive, pyrophoric, or hazardous reagents. Our Custom and Bulk Chemical Services group can take you beyond the catalog to provide customized solutions for your unique organic synthesis needs.


Oxidation reagents, reduction reagents, and other common synthesis reagents

We offer a broad range of reagents and product subsets for organic synthesis, including relatively simple molecules like acetic anhydride, complex molecules like EDTA, and reagents that facilitate a wide variety of transformations.

Phenols

Phenols are organic aromatic compounds made of a phenyl functional group (C6H5) bonded to a hydroxyl functional group (OH).

Halogenation compounds

Halogen inorganic salts are inorganic compounds made of metals and halogen elements, including fluorine, chlorine, bromine, iodine, and astatine.

EDTA

Ethylenediaminetetraacetic acid (EDTA) is an aminopolycarbcoxylic acid that readily binds to iron and calcium ions to form water-soluble complexes, even at neutral pH.

Acetic anhydrides

Acetic anhydrides are common electrophiles, as the leaving group is carboxylate. 

 

Examples of oxidation, reduction, and other reagents used in organic synthesis


Organometallics

Organometallics and organometalloids are widely used in organic chemistry due to their diversity and versatility. Organometallic compounds contain at least one bond between the carbon atom of an organic compound and a metal atom, while organometalloids have at least one bond between a carbon and a semimetal.

Due to the electropositive nature of their metals, these compounds are highly reactive. Organometallics function in organic synthesis as strong bases, as nucleophiles, as reducing agents, and in metal exchange reactions.

Grignard reagents

Grignard reagents are highly reactive organomagnesium halides that react with most organic compounds as well as H2O, CO2, and O2. They are often used in reaction with aldehydes and ketones to form alcohols.

Organolithium compounds

Organolithium compounds possess direct bonds between carbon and lithium atoms. Organolithium reagents are strongly basic, highly reactive nucleophiles used to transfer organic groups or lithium atoms to substrates during organic synthesis reactions.

Organozinc compounds

Organozinc compounds are pyrophoric organometallics with direct bonds between carbon and zinc atoms. Available in various chemical compositions, they are less reactive than analogous organometallic reagents and often appear as intermediates in reactions.

Organotin compounds

Organotin compounds are based on tin with hydrocarbon substituents and commonly have an oxidation state of Sn(IV). Available in various chemical compositions, these compounds have multiple industrial and research applications.

Examples of other organometallic reagents used in organic synthesis


Organosilanes

Organosilanes are used in organic chemistry research for protecting groups to act as intermediates in organic synthesis.

 

Selected types of organosilanes used in organic synthesis

Examples of organosilanes commonly used in organic synthesis


Named reaction reagents used in organic synthesis

Named chemical reactions—such as the Grignard reaction, Claisen rearrangement, and Clemmensen reduction, named after their discoverers一play a crucial role in organic synthesis and the creation of more complex and diverse chemical molecules.

The table lists major categories of named reactions used in organic synthesis along with key reactions in each category.

Major categories and examples of named reactions used in organic synthesis